Physics 137B Section 1: Problem Set #2 Due: 5PM Friday Feb 5 in the appropriate dropbox inside 251 LeConte (the "reading room")

Suggested Reading for this Week:

- Bransden and Joachain (B& J) sections 6.8-6.10
- B& J section 8.1

Homework Problems:

1. Adding two spins

In doing this problem, you may use the fact that the operators for the spin components of particle 1 commute with the operators for the spin components of particle 2.

- (a) Consider 2 electrons that are in an eigenstate of $(\vec{J})^2 = (\vec{S_1} + \vec{S_2})^2$ with eigenvalue $2\hbar^2$. Determine the value of $\vec{S_1} \cdot \vec{S_2}$.
- (b) Now consider the specific eigenstate from part (a) that also has $\langle J_z \rangle = 0$. Calculate the expectation values of $\langle S_{1x}S_{2x} \rangle$, $\langle S_{1y}S_{2y} \rangle$ and $\langle S_{1z}S_{2z} \rangle$. Verify that their sum gives the correct result for $\langle \vec{S_1} \cdot \vec{S_2} \rangle$
- 2. Precession in a Magnetic Field

A magnetic moment $\vec{\mu}$ is associated with a particle's spin by the expression $\vec{\mu} = \gamma \vec{S}$ where $\gamma \equiv g \frac{e}{2mc}$. Here g is called the gyromagnetic ratio and is an intrinsic property of the type of particle. For example g=2 for an electron. In a magnetic field \vec{B} the energy of orientation of the magnetic dipole is $-\vec{\mu} \cdot \vec{B}$, so the Hamiltonian H will contain a term $-\gamma(\vec{S} \cdot \vec{B})$. Using the general expression that relates the rate of change of the expectation value of an observable to the value of its commutator with H to show that \vec{S} behaves dynamically like a classical top, that is:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle \vec{S} \right\rangle = \gamma \left\langle \vec{S} \right\rangle \times \vec{B}$$

- 3. Matrix Form For Higher Spin States

 Obtain the matrix representation of the angular momentum operators J_x , J_y and J_z for the case $j = \frac{3}{2}$
- 4. Calculating Clebsh-Gordan Coefficients

 A particle with spin 3/2 is in a bound state with a particle of spin 1/2. We define the total spin $S^{\vec{t}ot}$ as the sum of the spins of these particles $S^{\vec{t}ot} = \vec{S} + \vec{S} + \vec{S} = \vec{S} + \vec{S} = \vec{S} + \vec{S} + \vec{S} = \vec{S} + \vec{S} + \vec{S} = \vec{S} + \vec{S} + \vec{S} + \vec{S} = \vec{S} + \vec{S} + \vec{S} + \vec{S} + \vec{S} +$

 $\vec{S}_1 + \vec{S}_2$. Using the angular momentum raising and lowering operators, construct the states that are eigenstates of $(\vec{S}^{tot})^2$ and S_z^{tot} .

5. Reading Clebsch-Gordan Tables

Answer the following questions using a Clebsh-Gordan table. A web pointer to such a table is available from our Web page.

- (a) Particle A is in the angular momentum state $|j=1, m_j=0\rangle$ and particle B is in the angular momentum state $|j=1, m_j=-1\rangle$. Express the wave function for the system as a superposition of states of specific $(J^{tot})^2$ and J_z^{tot} . What is the probability that $j^{tot}=2$?
- (b) A particle with spin 3/2 is in an eigenstate of S_z with eigenvalue $\hbar/2$. This particle has an orbital angular momentum eigenvalue $\ell=1$ and $m_\ell=0$. Write down the wave function of this particle in the in the basis where the states are labled by the eigenstates of $(J^{tot})^2$ and J_z^{tot} . good quantum numbers.
- 6. Non-Degenerate Perturbation Theory

A particle of mass m obeys the Hamiltonian

$$H = \frac{p^2}{2m} + \frac{1}{2}kx^2 + bx^4$$

To first order in perturbation theory, find the energy and the wave function for the state with quantum number n=3. Use the raising and lowering operators a and a^{\dagger} to solve this problem.